	3	Ξ	
	9	Ė	
•	i	Í	
	3		
	3	٠	

Lesson 3.1 Skills Practice

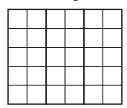
NAME_____DATE____

Flags and Fractions **Modeling Parts of a Whole**

Vocabulary

Choose the term from the box that best completes each statement.

fra	ection	numerator	denominator
1.	Α	_ represents a	part of a whole object, set, or unit.
2.	The number below the bar i	n a fraction is t	he
	In a fraction, the of the whole.		_ represents the number of parts
4.	In a fraction, thethe whole.		_ represents how many parts make
5	The number above the bar i	n a fraction is t	-he

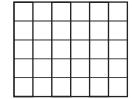

Problem Set

Shade each grid into equal parts. Determine the number of units in each part.

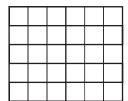
1. Shade the grid into equal halves.

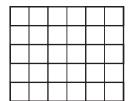
15 unit		15 unit	
unit	(O	unit	S


2. Shade the grid into equal thirds.


Each half must contain 15 units.

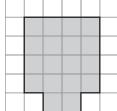
Grid shading answers will vary.

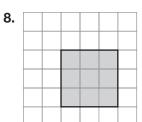

3. Shade the grid into equal fifths.


4. Shade the grid into equal sixths.

5. Shade the grid into equal tenths.

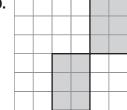


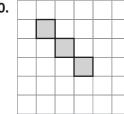

6. Shade the grid into equal fifteenths.

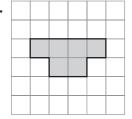


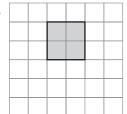
NAME____ DATE____

Determine the fraction represented by the shaded part of each grid.

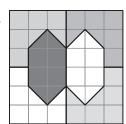





The shaded part is $\frac{18}{36}$ of the grid.

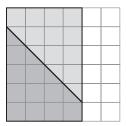



11.

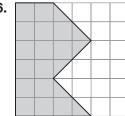


Each grid has been shaded into equal parts. Determine the number of units in each part. Determine the fraction represented by one part.

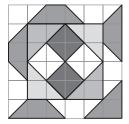
13.

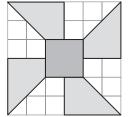


14.



Each part is $\frac{9}{36}$ of the grid.


15.


16.

17.

18.

Lesson 3.1 Skills Practice

page 5

DATE

Emilio is organizing his family's DVD collection. The collection contains the following DVDs.

- 12 action movies
- 6 comedy movies
- 8 drama movies
 7 science fiction movies
- 15 animated movies 2 musical movies
- 19. What fraction of the movies are action movies?

The total number of movies is 50.

Action movies are $\frac{12}{50}$ of the collection of movies.

NAME____

- 20. What fraction of the movies are drama movies?
- 21. What fraction of the movies are animated movies?
- 22. What fraction of the movies are comedy movies?
- 23. What fraction of the movies are science fiction movies?
- 24. What fraction of the movies are musical movies?

© 2011 Carnegie Learning

Olivia is organizing her family's collection of books. The collection contains the following books.

- 8 biographies
- 19 comics

• 7 mysteries

- 25 children's books
- 5 cookbooks
- 12 romance novels
- 25. What fraction of the books are biographies?

The total number of books is 76.

Biographies are $\frac{8}{76}$ of the collection of books.

- 26. What fraction of the books are mysteries?
- 27. What fraction of the books are cookbooks?
- 28. What fraction of the books are comics?
- 29. What fraction of the books are children's books?
- 30. What fraction of the books are romance novels?

Lesson 3.2 Skills Practice

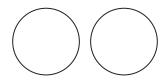
	DATE
1/11 E	

You Mean Three Can Be One? Fractional Representations

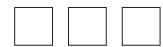
Problem Set

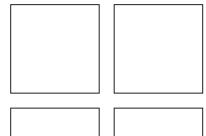
Divide each set of shapes into equal portions. Then, identify the fraction represented by each portion.

1. Divide the set of circles into 5 equal portions.



Each portion is $\frac{3}{5}$ of a circle.


3. Divide the set of circles into 6 equal portions.


4. Divide the set of squares into 4 equal portions.

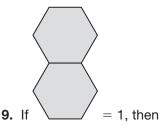
2. Divide the set of circles into 2 equal

portions.

5. Divide the set of squares into 5 equal portions.

6. Divide the set of squares into 3 equal portions.

3


Complete each of the following statements using pattern blocks.

$$= \frac{\frac{2}{3}}{3}$$

$$\triangle$$

=
$$\frac{\frac{1}{9}}{}$$

$$= \frac{\frac{1}{3}}{.}$$

_____ DATE _____ NAME_

© 2011 Carnegie Learning

Create rectangles for the given fractions using color tiles. Draw your solution.

13. $\frac{1}{4}$ yellow and $\frac{3}{4}$ red

14. $\frac{1}{2}$ red, $\frac{1}{4}$ blue, and $\frac{1}{4}$ yellow

- **15.** $\frac{1}{3}$ red, $\frac{1}{6}$ blue, $\frac{1}{6}$ green, and $\frac{1}{3}$ yellow
 - **16.** $\frac{2}{3}$ blue, $\frac{1}{6}$ red, and $\frac{1}{6}$ green

17. $\frac{3}{4}$ yellow, $\frac{1}{8}$ red, and $\frac{1}{8}$ green

18. $\frac{5}{8}$ green, $\frac{1}{4}$ red, and $\frac{1}{8}$ blue

_____ DATE ____

Determine each fractional representation. Draw your solution.

19. If
$$= 1$$
, what is $\frac{2}{3}$?

NAME_

20. If
$$= 2$$
, what is 1?

21. If
$$\longrightarrow$$
 = 1, what is $\frac{3}{5}$?

22. If $\longrightarrow = \frac{3}{4}$, what is 1?

23. If = 1, what is $\frac{3}{2}$?

24. If $=\frac{1}{4}$, what is 1?

Lesson 3.3 Skills Practice

NAME_____ DATE____

Rocket Strips Dividing a Whole Into Fractional Parts

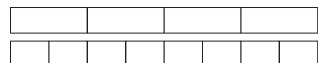
Vocabulary

Match each definition to its corresponding term.

- **1.** a fraction that has a numerator of 1 and a denominator that is a positive integer
- a. unit fraction
- **2.** fractions that represent the same part-to-whole relationship
- b. equivalent fractions

Problem Set

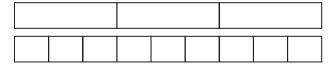
Divide the strips into equal parts and shade to show that the given fractions are equivalent.


1. Show that $\frac{1}{2}$ is equivalent to $\frac{2}{4}$.

2. Show that $\frac{2}{3}$ is equivalent to $\frac{6}{9}$.

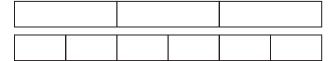
3. Show that $\frac{1}{4}$ is equivalent to $\frac{2}{8}$.

4. Show that $\frac{1}{3}$ is equivalent to $\frac{2}{6}$.



Divide the strips into equal parts and shade to determine the equivalent fraction.

5. Show that $\frac{1}{2}$ is equivalent to $\frac{1}{6}$.


- $\frac{1}{2}$ is equivalent to $\frac{3}{6}$.
- **6.** Show that $\frac{1}{3}$ is equivalent to $\frac{1}{9}$.

7. Show that $\frac{3}{5}$ is equivalent to $\frac{3}{10}$.

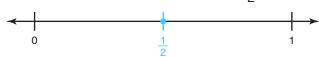
8. Show that $\frac{2}{3}$ is equivalent to $\frac{2}{6}$.

Lesson 3.4 Skills Practice

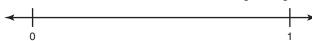
NAME_____DATE____

Getting Closer Benchmark Fractions

Vocabulary


Write a definition for each term in your own words.

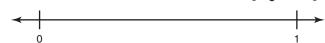
- 1. benchmark fractions
- 2. inequality


Problem Set

Label the given number line to represent the fractional part provided and plot each fraction.

1. Divide the number line into halves. Plot $\frac{1}{2}$.

2. Divide the number line into sixths. Plot $\frac{2}{6}$ and $\frac{5}{6}$.


3. Divide the number line into thirds. Plot $\frac{1}{3}$ and $\frac{2}{3}$.

4. Divide the number line into fifths. Plot $\frac{1}{5}$ and $\frac{3}{5}$.

5. Divide the number line into ninths. Plot $\frac{3}{9}$, $\frac{6}{9}$, and $\frac{8}{9}$.

6. Divide the number line into tenths. Plot $\frac{2}{10}$, $\frac{3}{10}$, $\frac{5}{10}$, and $\frac{9}{10}$.

Fill in the missing numerator or denominator so that each fraction is close to but less than $\frac{1}{2}$.

7. $\frac{8}{17}$

8. $\frac{4}{}$

9. <u>12</u>

10. $\frac{1}{7}$

11. $\overline{5}$

12. 9

Fill in the missing numerator or denominator so that each fraction is close to but less than 1.

13. $\frac{14}{15}$

14. $\frac{4}{}$

15. 8

16. $\overline{11}$

17. $\overline{13}$

18. <u>22</u>

Name the closest benchmark fraction to each given fraction.

19. $\frac{7}{8}$

20. $\frac{1}{9}$

The closest benchmark fraction is 1.

21. $\frac{5}{12}$

22. $\frac{16}{18}$

23. $\frac{2}{15}$

24. $\frac{3}{5}$

25. $\frac{13}{14}$

26. $\frac{5}{9}$

27. $\frac{3}{61}$

28. $\frac{23}{51}$

NAME

DATE

Estimate each sum.

29.
$$\frac{2}{5} + \frac{7}{8}$$

$$\frac{2}{5} + \frac{7}{8} \approx \frac{1}{2} + 1$$

$$= 1\frac{1}{2}$$

30.
$$\frac{14}{15} + \frac{8}{9}$$

31.
$$\frac{6}{14} + \frac{5}{11}$$

32.
$$\frac{9}{17} + \frac{2}{35}$$

33.
$$\frac{7}{15} + \frac{21}{23}$$

34.
$$\frac{9}{72} + \frac{23}{50}$$

35.
$$\frac{2}{41} + \frac{12}{13}$$

36.
$$\frac{6}{7} + \frac{11}{12} + \frac{4}{9}$$

37.
$$\frac{7}{15} + \frac{8}{14} + \frac{3}{7}$$

38.
$$\frac{11}{23} + \frac{13}{14} + \frac{9}{10} + \frac{2}{25}$$

Compare the fractions in each pair using benchmark fractions. Insert a < or > symbol.

39.
$$\frac{4}{7}$$
 $\frac{8}{9}$ $\frac{4}{7} \approx \frac{1}{2}$ and $\frac{8}{9} \approx 1$

40.
$$\frac{15}{16}$$
 — $\frac{7}{13}$

Because $\frac{1}{2} < 1$, I know $\frac{4}{7} < \frac{8}{9}$.

42. $\frac{7}{15}$ $\frac{1}{17}$

43. $\frac{7}{81}$ — $\frac{15}{16}$

41. $\frac{2}{51}$ — $\frac{18}{37}$

44. $\frac{9}{11}$ — $\frac{8}{15}$

Order the fractions from least to greatest. Explain your reasoning.

45. $\frac{5}{11}$, $\frac{5}{6}$, $\frac{5}{13}$, $\frac{5}{3}$, $\frac{5}{17}$, $\frac{5}{8}$

46. $\frac{7}{5}$, $\frac{7}{15}$, $\frac{7}{4}$, $\frac{7}{22}$, $\frac{7}{9}$, $\frac{7}{12}$

Because these fractions all have the same numerator, order the denominators so that the fractions range from least (largest denominator) to greatest (smallest denominator).

$$\frac{5}{17}$$
, $\frac{5}{13}$, $\frac{5}{11}$, $\frac{5}{8}$, $\frac{5}{6}$, $\frac{5}{3}$

47. $\frac{24}{25}$, $\frac{3}{6}$, $\frac{5}{11}$, $\frac{1}{16}$, $\frac{3}{5}$

48. $\frac{5}{10}$, $\frac{2}{21}$, $\frac{7}{13}$, $\frac{6}{7}$, $\frac{8}{17}$

49. $\frac{4}{7}$, $\frac{7}{15}$, $\frac{8}{9}$, $\frac{2}{19}$

50. $\frac{5}{9}$, $\frac{6}{13}$, $\frac{11}{13}$, $\frac{3}{28}$

Lesson 3.5 Skills Practice

NAME_____ DATE _____

What's My Cut? Equivalent Fractions

Vocabulary

Match each definition to its corresponding term.

- state in which the numerator and denominator of a fraction have no common factors by which they can be divided
- a. MultiplicativeIdentity Property
- **2.** states that $a \times 1 = a$, where a is a nonzero number
- b. simplest form

Problem Set

Complete each equation to make the fractions equivalent.

1.
$$\frac{1}{2} = \frac{1}{16}$$

$$\frac{1}{2} \times \frac{8}{8} = \frac{8}{16}$$

3.
$$\frac{6}{9} = \frac{1}{3}$$

$$\frac{1}{3}$$
 4. $\frac{6}{15} = \frac{2}{15}$

5.
$$\frac{12}{32} = \frac{1}{8}$$

6.
$$\frac{1}{4} = \frac{1}{24}$$

2. $\frac{3}{4} = \frac{9}{4}$

7.
$$\frac{1}{3} = \frac{8}{3}$$

8.
$$\frac{14}{16} = \frac{7}{16}$$

Write each fraction in simplest form.

9.
$$\frac{18}{21}$$

$$\frac{18}{21} \div \frac{3}{3} = \frac{6}{7}$$

10.
$$\frac{20}{28}$$

13. $\frac{6}{16}$

14. $\frac{6}{33}$

Simplify each fraction using prime factorization.

15.
$$\frac{20}{25}$$

16. $\frac{12}{18}$

$$\frac{20}{25} = \frac{2 \cdot 2 \cdot \cancel{5}}{5 \cdot \cancel{5}}$$

$$=\frac{4}{5}$$

17.
$$\frac{45}{72}$$

18.
$$\frac{42}{54}$$

19.
$$\frac{6}{15}$$

20.
$$\frac{21}{24}$$

Simplify each fraction using the greatest common factor.

21.
$$\frac{18}{24}$$

22. $\frac{32}{40}$

Factors of 18: 1, 2, 3, 6, 9, 18

Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24

$$GCF = 6$$

$$\frac{18}{24} \div \frac{6}{6} = \frac{3}{4}$$

© 2011 Carnegie Learning

DATE

23. $\frac{20}{36}$

NAME

24. $\frac{14}{21}$

25. $\frac{10}{35}$

26. $\frac{48}{54}$

Order the fractions from least to greatest.

27.
$$\frac{12}{8}$$
, $\frac{3}{12}$, $\frac{20}{16}$, $\frac{6}{8}$, $\frac{1}{2}$

Rewrite the fractions with a common denominator:

$$\frac{12}{8} \div \frac{2}{2} = \frac{6}{4}$$
, $\frac{3}{12} \div \frac{3}{3} = \frac{1}{4}$, $\frac{20}{16} \div \frac{4}{4} = \frac{5}{4}$, $\frac{6}{8} \div \frac{2}{2} = \frac{3}{4}$, $\frac{1}{2} \times \frac{2}{2} = \frac{2}{4}$

Order the fractions with a common denominator from least to greatest:

$$\frac{1}{4}$$
, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{5}{4}$, $\frac{6}{4}$

Write the corresponding original fractions from least to greatest:

$$\frac{3}{12}$$
, $\frac{1}{2}$, $\frac{6}{8}$, $\frac{20}{16}$, $\frac{12}{8}$

28.
$$\frac{12}{15}$$
, $\frac{12}{20}$, $\frac{48}{30}$, $\frac{49}{35}$, $\frac{6}{15}$

30. $\frac{1}{2}$, $\frac{12}{32}$, $\frac{1}{4}$, $\frac{10}{16}$, $\frac{3}{24}$

29. $\frac{20}{15}$, $\frac{4}{6}$, $\frac{5}{15}$, $\frac{32}{12}$, $\frac{21}{9}$

31. $\frac{24}{20}$, $\frac{3}{5}$, $\frac{36}{40}$, $\frac{3}{30}$, $\frac{1}{5}$

NAME_____ DATE____

32.
$$\frac{2}{3}$$
, $\frac{1}{2}$, $\frac{3}{4}$, $\frac{2}{24}$, $\frac{1}{4}$

Lesson 3.6 Skills Practice

NAME DATE

Trail Mix Adding and Subtracting Fractions with Like and Unlike Denominators

Vocabulary

Choose the term from the box that best completes each statement.

common denominator least common denominator

- 1. Two or more fractions have a ______ if the denominators in each fraction are the same.
- 2. The ______ is the least common multiple of the denominators.
- 3. A _____ is a whole number that is a common multiple of the denominators of two or more fractions.

Problem Set

Complete each addition sentence using fraction strips. Use at least one fraction with a different denominator for each.

1.
$$1 = \frac{1}{4} + \underline{\hspace{1cm}}$$

2.
$$1 = \frac{1}{8} + \underline{\hspace{1cm}}$$

$$1 = \frac{1}{4} + \frac{1}{4} + \frac{1}{2}$$

Answers will vary.

3.
$$1 = \frac{1}{3} + \underline{\hspace{1cm}}$$

4.
$$1 = \frac{3}{12} + \underline{\hspace{1cm}}$$

5.
$$1 = \frac{1}{16} + \underline{\hspace{1cm}}$$

6.
$$1 = \frac{2}{6} + \underline{\hspace{1cm}}$$

© 2011 Carnegie Learning

Rewrite each addition sentence so that the fractions have a common denominator. Then, determine if the addition sentence is true or false.

7.
$$1 = \frac{1}{3} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

$$1 = \frac{1}{3} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

$$1 = \frac{2}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

$$1=\frac{6}{6}$$

The addition sentence is true.

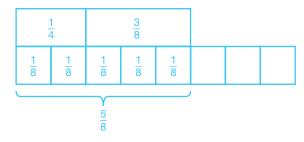
9.
$$1 = \frac{1}{6} + \frac{1}{4} + \frac{1}{4} + \frac{1}{2}$$

10.
$$1 = \frac{1}{8} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

8. $1 = \frac{2}{12} + \frac{2}{4} + \frac{1}{6} + \frac{1}{6}$

11.
$$1 = \frac{3}{12} + \frac{2}{6} + \frac{1}{3} + \frac{1}{12}$$

12.
$$1 = \frac{3}{8} + \frac{2}{4} + \frac{1}{2}$$


NAME

DATE____

Sketch the fraction-strip representation of each problem.

Then, calculate each sum.

13.
$$\frac{1}{4} + \frac{3}{8}$$

$$\frac{\frac{1}{4} = \frac{2}{8}}{\frac{3}{8} = \frac{3}{8}}$$

$$\frac{\frac{5}{8}}{\frac{5}{8}}$$

14.
$$\frac{1}{2} + \frac{1}{4}$$

© 2011 Carnegie Learning

© 2011 Carnegie Learning

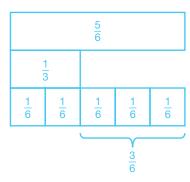
15.
$$\frac{1}{4} + \frac{5}{6}$$

16.
$$\frac{2}{3} + \frac{1}{4}$$

NAME______DATE____

17.
$$\frac{1}{2} + \frac{1}{3}$$

18.
$$\frac{5}{8} + \frac{3}{4}$$


© 2011 Carnegie Learning

Q

Sketch the fraction-strip representation of each problem.

Then, calculate each difference.

19.
$$\frac{5}{6} - \frac{1}{3}$$

$$\frac{\frac{5}{6} = \frac{5}{6}}{-\frac{1}{3} = \frac{2}{6}}$$
$$\frac{\frac{3}{6} = \frac{1}{2}}{\frac{1}{2}}$$

20.
$$\frac{7}{8} - \frac{1}{4}$$

NAME______DATE____

21.
$$\frac{3}{4} - \frac{1}{2}$$

22.
$$\frac{9}{12} - \frac{1}{4}$$

© 2011 Carnegie Learning

24. $\frac{2}{3} - \frac{1}{2}$

23. $\frac{5}{8} - \frac{1}{2}$

NAME

DATE

Determine the least common denominator for the fractions in each problem. Then, calculate each sum or difference.

25.
$$\frac{1}{6} + \frac{2}{3}$$

$$LCD = 6$$

$$\frac{1}{6} = \frac{1}{6}$$

$$+ \frac{\frac{2}{3} = \frac{4}{6}}{\frac{5}{6}}$$

26.
$$\frac{7}{8} - \frac{1}{4}$$

27.
$$\frac{9}{10} - \frac{1}{6}$$

28.
$$\frac{7}{12} + \frac{1}{4}$$

29.
$$\frac{3}{8} + \frac{1}{6}$$

30.
$$\frac{7}{12} - \frac{3}{8}$$

Lesson 3.7 Skills Practice

NAME DATE

Trail Mix Extravaganza **Improper Fractions and Mixed Numbers**

Vocabulary

Write a definition for each term in your own words.

1. mixed number

2. improper fraction

Problem Set

Write each improper fraction as a mixed number. Simplify if necessary.

1.
$$\frac{15}{6}$$

2.
$$\frac{29}{5}$$

3.
$$\frac{19}{7}$$

$$2\frac{3}{6} = 2\frac{1}{2}$$

4.
$$\frac{44}{6}$$

5.
$$\frac{38}{4}$$

6.
$$\frac{17}{3}$$

Draw a model to represent each mixed number.

- 7. $1\frac{2}{3}$
 - $\frac{3}{3}$ <u>2</u>

8. $3\frac{1}{4}$

9. $2\frac{5}{7}$

10. $4\frac{1}{2}$

11. $2\frac{2}{5}$

12. $3\frac{1}{6}$

NAME

DATE____

Calculate each sum and simplify.

13.
$$\frac{3}{5} + \frac{2}{3}$$

$$\frac{3}{5} = \frac{9}{15} + \frac{2}{3} = \frac{10}{15} = 1\frac{4}{15}$$

15.
$$\frac{7}{9} + \frac{2}{3}$$

16.
$$\frac{5}{6} + \frac{3}{4}$$

14. $\frac{1}{3} + \frac{3}{4}$

17.
$$\frac{2}{5} + \frac{8}{9}$$

18.
$$\frac{7}{8} + \frac{1}{4}$$

Write each mixed number as an improper fraction.

19.
$$3\frac{1}{4}$$

$$(3 \times 4) + 1 = 13$$

21.
$$5\frac{3}{7}$$

© 2011 Carnegie Learning

22.
$$2\frac{1}{3}$$

20. $2\frac{4}{5}$

23.
$$4\frac{5}{8}$$

24.
$$1\frac{8}{9}$$

Calculate each sum and simplify.

25.
$$2\frac{1}{4} + 1\frac{3}{8}$$

$$2\frac{1}{4} = 2\frac{2}{8}$$

$$+1\frac{3}{8} = 1\frac{3}{8}$$

$$3\frac{5}{8}$$

27.
$$1\frac{2}{5} + 4\frac{1}{2}$$

28.
$$3\frac{4}{9} + 2\frac{2}{3}$$

26. $5\frac{1}{6} + 3\frac{1}{4}$

29.
$$2\frac{5}{6} + 4\frac{3}{8}$$

30.
$$1\frac{3}{4} + 3\frac{2}{3}$$

Complete each equation to make the mixed numbers equivalent.

31.
$$4\frac{2}{3} = 3\frac{1}{3}$$

$$4\frac{2}{3} = 3\frac{2}{3} + \frac{3}{3}$$
$$= 3\frac{5}{3}$$

33.
$$1\frac{5}{6} = \frac{1}{6}$$

34.
$$5\frac{7}{12} = 4\frac{1}{12}$$

32. $2\frac{4}{7} = 1_{\overline{7}}$

DATE ____

35.
$$3\frac{1}{4} = 2\frac{1}{4}$$

36.
$$6\frac{7}{8} = 5\frac{7}{8}$$

Calculate each difference and simplify.

Calculate each difference

37.
$$3\frac{1}{4} - 1\frac{5}{8}$$

$$3\frac{1}{4} = 3\frac{2}{8} = 2\frac{10}{8}$$

$$-1\frac{5}{8} = 1\frac{5}{8} = 1\frac{5}{8}$$

$$1\frac{5}{8}$$

38.
$$5\frac{1}{2} - 2\frac{5}{6}$$

39.
$$6\frac{3}{8} - 3\frac{4}{5}$$

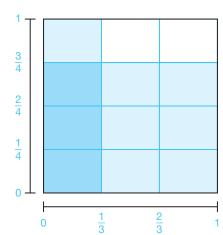
40.
$$7\frac{1}{6} - 4\frac{2}{3}$$

41.
$$4\frac{2}{7} - 1\frac{3}{4}$$

42.
$$9\frac{1}{3} - 5\frac{3}{5}$$

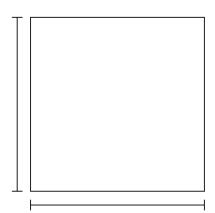
399

Lesson 3.8 Skills Practice

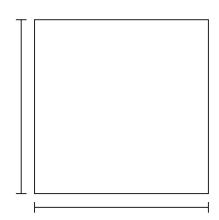

NAME_____ DATE____

Pizzas by the Slice-or the Rectangle! Parts of Parts

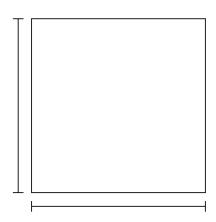
Problem Set

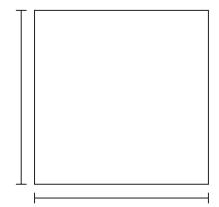

Represent each product using an area model. Then calculate the product.

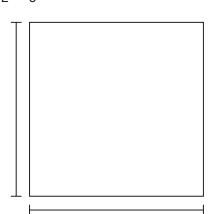
1.
$$\frac{3}{4} \times \frac{1}{3}$$



$$\frac{3}{4} \times \frac{1}{3} = \frac{3}{12}$$
$$= \frac{1}{4}$$


2.
$$\frac{1}{2} \times \frac{3}{5}$$


3.
$$\frac{1}{6} \times \frac{2}{3}$$


4.
$$\frac{1}{3} \times \frac{4}{5}$$

5.
$$\frac{1}{4} \times \frac{1}{3}$$

6.
$$\frac{1}{2} \times \frac{5}{6}$$

NAME

DATE

Calculate each product. Simplify if necessary.

7.
$$\frac{3}{5} \times \frac{4}{7}$$

$$\frac{3}{5} \times \frac{4}{7} = \frac{12}{35}$$

9.
$$\frac{2}{5} \times \frac{10}{13}$$

10.
$$\frac{5}{8} \times \frac{1}{2}$$

8. $\frac{2}{9} \times \frac{1}{4}$

11.
$$\frac{3}{7} \times \frac{4}{5}$$

12.
$$\frac{3}{4} \times \frac{1}{12}$$

13.
$$\frac{2}{3} \times \frac{4}{9}$$

14.
$$\frac{1}{6} \times \frac{12}{13}$$

16. $3\frac{8}{9} \times 2\frac{7}{15}$

Use benchmark fractions to estimate each product.

15.
$$2\frac{5}{6} \times 3\frac{1}{8}$$

$$\frac{5}{6} \approx 1, \text{ so } 2\frac{5}{6} \approx 3$$
$$\frac{1}{8} \approx 0, \text{ so } 3\frac{1}{8} \approx 3$$

Because $3 \times 3 = 9$,

I know
$$2\frac{5}{6} \times 3\frac{1}{8} \approx 9$$
.

17.
$$9\frac{6}{7} \times 4\frac{1}{5}$$

18.
$$6\frac{4}{7} \times 2\frac{1}{9}$$

19.
$$3\frac{11}{13} \times 4\frac{9}{10}$$

20.
$$7\frac{5}{9} \times 5\frac{13}{15}$$

Calculate each product. Write your answer in simplest form.

21.
$$3\frac{4}{5} \times 2\frac{1}{2}$$

22.
$$1\frac{3}{8} \times 6\frac{1}{4}$$

$$3\frac{4}{5} \times 2\frac{1}{2} = \frac{19}{5} \times \frac{5}{2}$$
$$= \frac{95}{10}$$
$$= 9\frac{5}{10}$$
$$= 9\frac{1}{2}$$

23.
$$5\frac{2}{3} \times 4\frac{1}{6}$$

24.
$$2\frac{1}{3} \times 7\frac{1}{4}$$

25.
$$8\frac{1}{3} \times 3$$

26.
$$7\frac{2}{5} \times 2$$

27.
$$6\frac{1}{2} \times 1\frac{3}{4}$$

28.
$$3\frac{1}{8} \times 5\frac{1}{2}$$

Lesson 3.9 Skills Practice

NAME DATE

Yours Is to Reason Why! Parts in a Part

Vocabulary

reciprocal

Choose the term from the box that best completes each statement.

multiplicative inverse

_____ of a number $\frac{a}{b}$ is the number $\frac{b}{a}$, where a and b are nonzero numbers.

2. When you reverse the numbers in the numerator and denominator of a fraction, you form a new fraction called the

3. The reciprocal of a number is also known as the of the number.

states: $\frac{a}{b} \times \frac{b}{a} = 1$, where a and b are nonzero **4.** The numbers.

Problem Set

Draw a diagram to represent each division problem. Then calculate the quotient.

1.
$$\frac{1}{2} \div \frac{1}{4}$$

$$\frac{1}{2} \div \frac{1}{4} = 2$$

3.
$$\frac{3}{4} \div \frac{1}{8}$$

4.
$$\frac{2}{3} \div \frac{1}{6}$$

2. $4 \div \frac{2}{3}$

Multiplicative Inverse Property

5.
$$\frac{5}{2} \div \frac{1}{2}$$

6.
$$\frac{3}{2} \div \frac{1}{6}$$

Write the reciprocal of each fraction. Then show that the product of the original fraction and its reciprocal is 1.

7.
$$\frac{3}{5}$$

8.
$$\frac{4}{9}$$

The reciprocal of $\frac{3}{5}$ is $\frac{5}{3}$.

$$\frac{3}{5} \times \frac{5}{3} = \frac{15}{15}$$

9.
$$\frac{1}{7}$$

11.
$$\frac{9}{8}$$

12.
$$\frac{3}{7}$$

Calculate each quotient. Simplify your answer.

13.
$$\frac{5}{6} \div \frac{1}{2}$$

$$\frac{5}{6} \div \frac{1}{2} = \frac{5}{6} \times \frac{2}{1}$$

$$= \frac{10}{6}$$

$$= 1\frac{4}{6}$$

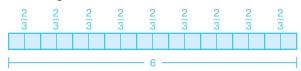
$$= 1\frac{2}{3}$$

14.
$$\frac{8}{9} \div \frac{2}{3}$$

DATE

15.
$$\frac{7}{8} \div \frac{1}{4}$$

NAME


16.
$$\frac{3}{4} \div \frac{1}{6}$$

17.
$$\frac{15}{16} \div \frac{3}{4}$$

18.
$$\frac{7}{12} \div \frac{1}{3}$$

Draw a diagram to represent each problem. Then solve the problem.

19. Hector has 6 cups of popcorn. How many friends can he share the popcorn with if each is given $\frac{2}{3}$ cup?

$$\frac{6}{1} \div \frac{2}{3} = \frac{6}{1} \times \frac{3}{2}$$
$$= \frac{18}{2}$$

Hector can share the popcorn with 9 friends.

407

- 3
- 21. Lea has $\frac{3}{4}$ cup of laundry detergent left in the detergent bottle. Each load of laundry requires $\frac{1}{6}$ cup of detergent. How many loads of laundry can Lea wash?

20. Sherwin has 3 cups of grapes. He likes to pack $\frac{3}{4}$ cup of fruit in his lunch each day. How many days can Sherwin pack grapes in his lunch?

3

NAME_____DATE____

22. LaVonne has $\frac{4}{5}$ cup of blueberries. A batch of blueberry muffins requires $\frac{1}{3}$ cup of blueberries. How many batches of blueberry muffins can LaVonne make?

23. Nina has $\frac{2}{3}$ cup of shampoo left in the shampoo bottle. She uses $\frac{1}{8}$ cup of shampoo to wash her hair. If Nina washes her hair every day, how many days can she wait before opening a new bottle of shampoo?

24. Carmen has 5 pints of strawberries. She needs $\frac{3}{2}$ pints to make a batch of strawberry ice cream. How many batches of strawberry ice cream can Carmen make?

Lesson 3.10 Skills Practice

NAME_____ DATE ____

Divide Your Time Well, and Your Trail Mix, and Your . . .

Mixed Number Division

Problem Set

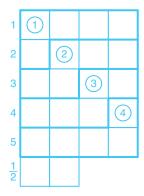
Calculate each quotient. Simplify your answer.

1.
$$9\frac{1}{3} \div 2\frac{1}{3}$$

$$9\frac{1}{3} \div 2\frac{1}{3} = \frac{28}{3} \div \frac{7}{3}$$
$$= \frac{28}{3} \cdot \frac{3}{7}$$
$$= \frac{4}{1} \cdot \frac{1}{1} = \frac{4}{1} = 4$$

3.
$$19 \div 6\frac{1}{4}$$

5.
$$7\frac{3}{4} \div 1\frac{1}{4}$$


2.
$$10\frac{1}{5} \div 3\frac{2}{5}$$

4.
$$12\frac{1}{2} \div 2\frac{1}{3}$$

6.
$$15\frac{2}{3} \div 4\frac{5}{6}$$

Use a model to calculate each quotient.

7. $5\frac{1}{2} \div 1\frac{1}{4}$

Draw a model for $5\frac{1}{2}$. Divide the model into $\frac{1}{4}$'s. Mark off groups of $\frac{5}{4}$. There are 4 whole groups. The remaining two parts are $\frac{2}{5}$ of a group. Therefore, $5\frac{1}{2} \div 1\frac{1}{4} = 4\frac{2}{5}$.

8. $6\frac{1}{2} \div 2\frac{1}{2}$

NAME______DATE_____

9.
$$7\frac{1}{3} \div 1\frac{2}{3}$$

10.
$$5\frac{3}{4} \div 1\frac{1}{8}$$

12.
$$7\frac{3}{4} \div 3\frac{1}{4}$$

11. $6 \div 2\frac{1}{3}$

DATE _____

Solve each problem.

NAME

13. Each box of Zippy-Snap Cereal contains 16 ounces of cereal. How many $1\frac{1}{4}$ ounce servings does each box contain?

$$16 \div 1\frac{1}{4} = \frac{16}{1} \div \frac{5}{4} = \frac{16}{1} \cdot \frac{4}{5} = \frac{64}{5} = 12\frac{4}{5}$$

Each box of cereal contains $12\frac{4}{5}$ servings.

- **14.** Three friends brew $25\frac{1}{4}$ ounces of coffee. If they divide the coffee equally, how much coffee will each friend get?
- **15.** Two employees at a warehouse are stacking crates in a room that is $9\frac{3}{4}$ feet tall. If each crate is $1\frac{5}{8}$ feet tall, what is the maximum number of crates in each stack?
- **16.** How many acres can be fertilized by a 100-pound bag of fertilizer if it takes $13\frac{1}{3}$ pounds to fertilize one acre?
- 17. Ms. Duncan is placing geometry books side by side on a bookshelf. How many books can she place on the shelf if each book is $1\frac{7}{8}$ inches wide and the shelf is $26\frac{3}{4}$ inches wide?

18. Rosita is making pizzas for a party. Each pizza requires $1\frac{1}{4}$ cups of sauce and $1\frac{3}{4}$ cups of cheese. How many whole pizzas can Rosita make if she only has $8\frac{1}{2}$ cups of sauce and $13\frac{1}{2}$ cups of cheese?

© 2011 Carnegie Learning